欢迎来到朵拉利品网
知识中心
资讯
  • 资讯
  • 产品
  • 供应商
您的位置: 朵拉利品网 >  知识中心 > 开箱机的结构设计 我在广州,附近周边哪里有卖开箱机的?应该需注意哪些啊?哪个牌子...
开箱机的结构设计 我在广州,附近周边哪里有卖开箱机的?应该需注意哪些啊?哪个牌子...
2019-06-11 00:04:19 来源:朵拉利品网

1, 我在广州,附近周边哪里有卖开箱机的?应该需注意哪些啊?哪个牌子...



斩拌机的结构原理:
斩拌机的结构主要由盛装原料的斩肉盘、高速旋转的斩拌刀具、上料机构、出料机构、传动系统、电器控制系统、刀盖及机架等部分组成示。真空斩拌机要另加一套真空装置。斩肉盘用不锈钢制造。电动机的动力通过三角皮带和蜗轮蜗杆减速后,由棘轮机构带动斩肉盘轴驱动斩肉盘单向旋转,斩肉盘逆时针方向转动。
切割刀具由3-6把刀片组成,刀片安装在刀轴上。刀具上方有保护和防止肉料飞溅的刀盖。刀轴由一台电动机通过三角皮带带动高速旋转,转速可以调节(2一3挡)。打开刀盖时,刀具自动停止转动,以保证安全。在真空斩拌机中,还有一个转盘密封盖,为的是在抽真空时起到作用。
出料机构由一台电动机通过齿轮减速机带动转轴和出料圆盘转动,整个机构可自由活动。斩拌时将出料盘向上抬起,圆盘不转。出料时,将出料机构放人斩肉盘内,接通电源,出料圆盘转动进行出料。 传动系统由电动机分别带动环形斩肉盘、刀轴和出料转盘工作。电动机经带轮使蜗杆传动蜗轮,通过带轮机构使斩肉盘单向旋转。
斩拌机刀速、锅速、斩刀与转锅的间隙达到最佳的组合,使斩切产品细度好、升温小、斩拌时间短,特别是由于乳化处理,使肠类产品的细密度与弹性大大增强,最大程度的提高了肉制品乳化效果、弹性及细腻度。
分类:
可分为双速斩拌机和节能变频斩拌机。
特点:
斩拌机利用斩刀高速旋转的斩切作用,将肉及辅料斩成肉馅或肉泥,还可以将辅料、冰片、水与肉馅或肉块一起搅拌均匀。
采用变频技术,刀速调整范围大,具有高效节能的功能,刀速、锅速、斩刀与斩锅的间隙、斩刀材质和刀的硬度设计最为合理。
用途:
斩拌机是肉制品生产工艺中的关键设备,高速旋转的斩拌刀可把原料肉斩拌成细腻的糜状,同时可以把其它辅料搅拌均匀,是宾馆、酒家、食堂、肉类加工场等单位所不可缺少的肉类加工机械。

2, 斩拌机的结构 原理



机械设计
机械设计(machine design),根据使用要求对机械的工作原理、结构、运动方式、力和能量的传递方式、各个零件的材料和形状尺寸、润滑方法等进行构思、分析和计算并将其转化为具体的描述以作为制造依据的工作过程。
机械设计是机械工程的重要组成部分,是决定机械性能的最主要因素。由于各产业对机械的性能要求不同而有许多专业性的机械设计,如纺织机械设计、矿山机械设计、农业机械设计、船舶设计、汽车设计、机床设计、压缩机设计、内燃机设计、汽轮机设计、泵设计等专业性的机械设计分支学科。
机械设计大体可分为 :
①新型设计(开发性设计)。应用成熟的科学技术或经过实验证明可行的新技术,设计未曾有过的新型机械,主要包括功能设计和结构设计。
②继承设计。根据使用经验和技术发展对已有的机械设计更新,以提高性能、降低制造成本或减少运行费用。
③变型设计。为适应新的需要对已有的机械作部分的修改或增删,从而发展出不同于标准型的变型产品。
机械设计的主要程序为:
①根据用户订货、市场需要和新科研成果制定设计任务。
②初步设计。包括确定机械的工作原理和基本结构形式,进行运动设计、结构设计并绘制初步总图以及初步审查。
③技术设计。包括修改设计(根据初审意见)、绘制全部零部件和新的总图以及第二次审查。
④工作图设计。包括最后的修改(根据二审意见)、绘制全部工作图(如零件图、部件装配图和总装配图等)、制定全部技术文件(如零件表、易损件清单、使用说明等)。
⑤定型设计。用于成批或大量生产的机械。对于某些设计任务比较简单(如简单机械的新型设计、一般机械的继承设计或变型设计等)的机械设计可省去初步设计程序。
结构设计
建(构)筑物的结构设计
建(构)筑物包括上部结构设计和基础设计。
根据建筑设计来确定结构形式,结构布置,进行建筑各个构件的结构设计,选用材料类型、标号等,确定构件的截面尺寸,配筋信息等。此外还包括某些构造措施。需要依据结构专业相关规范、图集等。

3, 机械设计 结构设计



机械结构件的结构要素和设计方法
1结构件的几何要素
机械结构的功能主要是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。
零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。
2结构件之间的联接
在机器或机械中,任何零件都不是孤立存在的。因此在结构设计中除了研究零件本身的功能和其它特征外,还必须研究零件之间的相互关系。
零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线,这是靠床身导轨和主轴轴线相平行来保证的,所以,主轴与导轨之间位置相关;而刀架与主轴之间为运动相关。
多数零件都有两个或更多的直接相关零件,故每个零件大都具有两个或多个部位在结构上与其它零件有关。在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理地选择材料的热处理方式、形状、尺寸、精度及表面质量等。同时还必须考虑满足间接相关条件,如进行尺寸链和精度计算等。一般来说,若某零件直接相关零件愈多,其结构就愈复杂;零件的间接相关零件愈多,其精度要求愈高。例如,轴毂联接见图5.1。
3.3 结构设计据结构件的材料及热处理不同应注意的问题
机械设计中可以选择的材料众多,不同的材料具有不同的性质,不同的材料对应不同的加工工艺,结构设计中既要根据功能要求合理地选择适当的材料,又要根据材料的种类确定适当的加工工艺,并根据加工工艺的要求确定适当的结构,只有通过适当的结构设计才能使所选择的材料最充分的发挥优势。
设计者要做到正确地选择材料就必须充分地了解所选材料的力学性能、加工性能、使用成本等信息。结构设计中应根据所选材料的特性及其所对应的加工工艺而遵循不同的设计原则。
如:钢材受拉和受压时的力学特性基本相同,因此钢梁结构多为
对称结构。铸铁材料的抗压强度远大于抗拉强度,因此承受弯矩的铸铁结构截面多为非对称形状,以使承载时最大压应力大于最大拉应力,图示5.2为两种铸铁支架比较。钢结构设计中通常通过加大截面尺寸的方法增大结构的强度和刚度,但是铸造结构中如果壁厚过大则很难保证铸造质量,所以铸造结构通常通过加筋板和隔板的方法加强结构的刚度和强度。塑料材料由于刚度差,成型后的冷却不均匀造成的内应力极易引起结构的翘曲,所以塑料结构的筋板与壁厚相近并均匀对称。
对于需要热处理加工的零件,在进行结构设计时的要求有如下几点:(1)零件的几何形状应力求简单、对称,理想的形状为球形。(2)具有不等截面的零件,其大小截面的变化必须平缓,避免突变。如果相邻部分的变化过大,大小截面冷却不均,必然形成内应力。(3)避免锐边尖角结构,为了防止锐边尖角处熔化或过热,一般在槽或孔的边缘上切出2~3mm的倒角。(4)避免厚薄悬殊的截面,厚薄悬殊的截面在淬火冷却时易变形,开裂的倾向较大。

4, 做机械结构设计要学什么?



机械结构设计的任务
机械结构设计的任务是在总体设计的基础上,根据所确定的原理方案,确定并绘出具体的结构图,以体现所要求的功能。是将抽象的工作原理具体化为某类构件或零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之间关系等问题。所以,结构设计的直接产物虽是技术图纸,但结构设计工作不是简单的机械制图,图纸只是表达设计方案的语言,综合技术的具体化是结构设计的基本内容。
5.1.2机械结构设计特点
机械结构设计的主要特点有:(1)它是集思考、绘图、计算(有时进行必要的实验)于一体的设计过程,是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。(2)机械结构设计问题的多解性,即满足同一设计要求的机械结构并不是唯一的。(3)机械结构设计阶段是一个很活跃的设计环节,常常需反复交叉的进行。为此,在进行机械结构设计时,必须了解从机器的整体出发对机械结构的基本要求
5.2机械结构件的结构要素和设计方法
5.2.1结构件的几何要素
机械结构的功能主要是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。
零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。
5.2.2结构件之间的联接
在机器或机械中,任何零件都不是孤立存在的。因此在结构设计中除了研究零件本身的功能和其它特征外,还必须研究零件之间的相互关系。
零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以Vこ萋值恼?D龊稀T硕?喙厥侵敢涣慵?脑硕?旒S肓硪涣慵?泄兀?绯荡驳都艿脑硕?旒1匦肫叫杏谟谥髦岬闹行南撸?馐强看采淼脊旌椭髦嶂嵯呦嗥叫欣幢Vさ模??裕?髦嵊氲脊熘?湮恢孟喙兀欢?都苡胫髦嶂?湮?硕?喙亍?BR>
多数零件都有两个或更多的直接相关零件,故每个零件大都具有两个或多个部位在结构上与其它零件有关。在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理地选择材料的热处理方式、形状、尺寸、精度及表面质量等。同时还必须考虑满足间接相关条件,如进行尺寸链和精度计算等。一般来说,若某零件直接相关零件愈多,其结构就愈复杂;零件的间接相关零件愈多,其精度要求愈高。例如,轴毂联接见图5.1。